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ABSTRACT

An expression for the acoustic response of a liquid layer
overlying a multilayer viscoelastic medium is determined., The excita-
tion is provided by a point source in the liquid layer. The output
relationship of the system is expressed as a multiple integral using
Fourier transforms for the time domain and Hankel transforms for the
spatial domain. In this boundary-value problem the theories of fluid
dynamics and elasticity provide the basis for describing the hydro-
dynamic and viscoelastic fields. The mathematical model utilizes
assumptions, most of which have proven to accurately describe actual
physical observations, particularly with respect to seismic work in
geophysics. New techniques in this approach include the introduction
of complex wave numbers to describe the damping of the system using
viscoelastic theory. Alsc a scheme is developed, using recursion
relations between adjacent layers, whereby the potential of the liquid
layer can be found easily. The liguid layer and each viscoelastic
layer is considered to be homogeneous and the interfaces are assumed

to be plane and parallel.
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I. INTRODUCTION

Investigations of reflections from an ocean subbottom
coverced with a liquid layer have been pursued for a long time.
The determination of the subbottom structure and its machanical
'properties are problems of extreme importance and require fine
theéretical as well as fine experimental results. The present
method of approach to this problem area is largely inspired by
elasticity theoreticians. 1Indeed, Lamb's 1904 work [10]on the
investigation of the earth's elastic properties is generalized
here by covering the earth's surface with a finite depth of
liquid otherwise extending to infinity. Since Lamb's investi-
gation a great deal of work has been done in this area Ly
Haskell [3], Thompson [21], Tolstoy [20] and others who have
used plane #ave approximation methods or the ray theoretical
approach, as opposed to field theoretical formalisms, without
gaining a keen insight into the phenomenological aspects of
the situation. Others have shown that the ray theory results
can be obtained from the field theoretical approach by applying
proper approximation technigues. These arguments suggest that
the field theoretical approach, which is based on the conserva-
tion laws of nature, is more general and more sensitive to the
physical situation, and thus gives a more complete picture of
nature. For this reason, field theory serves as the foundation
of this thesis,

New concepts, that contribute to the inp.ovement of

modeling and solving this class of subhottom proking problems,
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are introduced in this thesis. The basic improvement is in
the subbottom model which in previous studies has been con-
sidered to be a perfectly elastic medium or lavers, whereas
in this investigation, the subbottom model is chosen to be
viscoelastic medium. This is a much better represcntation of
reality. This generalization is well justified, but from the
mathematical and numerical calculation point of view it becomes
rathef costly. Thus the results are new and facilitate efforts
in the fields of oceanography, geophysics, and marine technology
on the understanding and identification of soil mechanical
properties of the subbottom. Also, the results may open new
possibilities for further extrapolations of the subject matter
from the geophysical point of view,

In addition to the improvement of subbottom modeling,

a breakthrough in multilayer analysis makes it possible to

évoid the medium characteristic matrix inversion problem con-
sequently saving considerable efforts in the analygis of n-layer
problems. This is accomplished by a simple and new boundary-
iterative formalism which contains matrix theory as the under-
lying algebraic structure.

The theoretical devélopment of this thesis begins with
the introduction of the field equations necessary to describe
the hydrodynamic and viscoelastic models, followed by chapters
detailing the steps that lead to the solution of the one-layer
problem, and finally the n-layer problem. Since we shall in-
vestigate an axially symmetric isotropic medium, the mathematical

formalism is expressed in terms of cylindrical coordinates,
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THEORETICAL DEVELOPMENT




IT. THEORETICAL DEVELOPMENT

1. Pield Equations

We have at our disposal two fields, namely the liquiad
and the viscoelastic fields. The wave propagation properties
of thgse fields can be best represented by the following wave

equations (See Appendix A).

2,2

(7 4k 316 =0 (1)
2,2

(VE4k;) 6, =0 (2a)
2,2

(Vo4k0) ¢0=0 (2b)

Here the o, L, and T indices refer to the liguid, viscoelastic
longitudinal and viscoelastic transverse, respectively. Equa-
tions (1) and (2) were obtained from the field equations by
taking the Fourier transforms in time. Wave numbers for the
viscoelastic field equations are complex because of the complex
moduli of the Lame parameters whereas the velocity of sound in

the liquid layer is assumed to be real and constant:

kozw/co - kp=e/ep kT=w/cT
A=A +iwA " u=p +iop”” (3)
2_ 2 = 2 -
CO—-)\O/QO CL"' (l+211) /p Crr"“/p

Here we have defined the hydrodynamic field from the elasticity
point of view by denoting Ci equated to Ao/po where Ao is the
newly defined Lame constant for the liquid. Since neither

viscosity (no shear waves are supported by the liquid) nor



damping effects are considered in the liquid, we can write

the acoustic field wave equations from the viscoelastic wave
equations by simply setting W (w)=0 and retaining the real part
of XA{w). This is very convenient for the stress field descrip-
tions of these two distinct fields as will be apparent in the
forthcoming discussions.

Longitudinal (compressional) and transverse (shear)
waves are not coupled in an infinitely extended medium when
the regime is linear (Hooke's regime). However, coupling be-
tween these two waves will occur due.to the existence of the
liguid-solid interface. In such a boundary coupling case
longitudinal and vertical shear waves will be coupled. Because
their polarization planes are common, energy transfer from one

polarization to the other becomes possible,



2. Approach to the Solution

Due to the isotropy of the liquid layer and the vis-
coelastic halfspace, there exists an axial symmetry in the
problem, This suggests that the proper coordinate system is
the cylindrical coordinate system. While in general the problem
can be solved in any coordinate system (physical laws being
independent of the choice of the coordinate system), this
specific choice of coordinates makes the calculations consider-
ably simpler. Thus equations (1) and (2) need to be written

in cylindrical coordinates., Starting with eguatien (1),
(32+ks 41 52,52

~—36+BZ

2., _
rrr r2 +ko)¢o”0

the ae will vanish due to axial svmmetry, therefore
2.1 2,2, . _
(ar+?ar+3z+ko)djom0 (4)

Similarly equations (2a) and (2b) will read:

2.1 2.2, '

(ar+;ar+az+kL)¢L~0 {5)
2.1 2.2 B

(ar+far+az+kT)¢T_0 (6}

We would like to use boundary conditions which are on the
boundary planes perpendicular to the z-axis. It is obvious
that there are no boundaries (discontinuities) in the radial
direction, thus we can convért r-devendent operators into
constants by using the following Hankel transform pair (see,

e. g., Sneddon [17]):

o

X(2)=f X{r)T _{rx)rdr
0, o)

© (7)
X(x}=/ X(£)J _(zr)zdc
0 o

In the llankel transform pair ; represents the transformation
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parameter. The kernel Jo(gr) is chosen as the zeroth order
Bessel function because of the angular syrinetry of the problem.

Note that the Hankel transform provides the following identity:

o0

{ (a§+%ar)x(r)Jo(;r)rdr=-c22(£) (8)

Therefore, equations (4), (5) and (6) will be reduced to the

following forms:

(a2~ c2x2) 33 (2, 2,u) =0 (9)

[22-(®-x2) 18 (2,2 0120 (10)
2 2 .2, |

(35 (2%-k2) 13, (5, 2,0) =0 (11)

Now, the sclutions of these differential equations are obvious:

50(g,z,w)=A0(c,w)e_aozwo(c,m}eaoz (12)
$L(c.Z.m>=AL(§,w)e'aLz+BL(c,w>eaLz (13)
bpltrz,w)=ny (L, w) e 1548 (1, ) o1 (14)
a = fo°-x? a = 2—k§ ap= ,2—k£ (15)

The exponential terms containing the two integrations parameters
A(Cfm) and B(Crw) represent‘downward and upward traveling waves,
respectively. 1In forthcoming discussions of the one-layer problem
and the multilayer problem we will see that the two integration
parameters AO(c,w) and Bo(c,w) for the liquid layer stay in the
picture. However, for viscoelastic layer solutions, the BL(g,m)
and BT(c,w) exponential solutions drop out for the bottom layer

due to the non-reflective property of the semiinfinite medium.



3. DBoundary Conditions

Boundary conditions are required to evaluate the inte-
ration paramcters that arise iﬁ the sclut” 0f the field
equatiocns. Later when we consider the pr: ‘cm of a source
suspended in the ligquid layer, the boundary conditions will
lead {o a dispersion relation which represents the forced
oscillations of the viscoelastic half-space covered with a
finite height liquid layer. Two types of boundary conditions
arise. One 1is a result of the continuity of mass dengity.
This boundary condition implies that the displacement is con-
tinucus across the interface between two different media, or

YniTn(i+1)
(16)
BeiTe (141)
at the boundary bhetween the i th layer and the (i+l) th layer,
where u, is the component of the displacement normal to the

boundary, and u_ is the tangential component of the displace-

t
ment. The second type of boundary condition arises from the
conservation of linear momentum law. The statement of this

boundary condition is that the stress tensor is continuous

across the boundary, or

6. =0 ,
nni nn(i+l)

(17)

Seni“C¢n (i+1)

where Cn is the stress normal to the boundary, and Gen is the

shear stress at the boundary.



4. Stress and Displacement Field Equations

In order to use the boundary conditions suggested in
the previous section it is necessary to determine the stress
and displacement fields completely in both the liquid and vis-
~coelastic layers. The stress tensor a3 4 is related to the

strain tensor €1 5 by the well-known relation (117,

cij=he6ij+2ueij (18)
h = =7 1
where e Err+EBB+EZZ V.u (19)
d u=u o a -
an u urer+uee.8+uzez

g 1
€rp™3 Uy 28r8=a 97T faeur
Uy
€056t 2erzzazur+8ruz (20)
e =5 u 2¢. =13 u +3 u
ZzZ 2z z 8z r' 89z “z°8

Substituting equations (19) and (20) into the stress-strain

relation given by (18) yields:

O r=A (V. 0)+2}5 u_

u
=T (V. Syeoo (L _x
o’eeul(v.u)+2u(raeu8+r )
o__=x(V.u)+240 u
2z z 2 (21a-f)
0
_- . g1
Org=H (B ug-r=tzd u )

Orz=U(azur+aruz)

=1
“ez‘“(Eae“z+az“e)



For convenience of the calculations, the stress field com-
ponents in the liquid and the viscoelastic media will be written
in terms of the scalar potentials defined by equations (1) and
(2).

From the hydrodynamic field equation derivations of

Appendix A we use

u0=V¢O (22)
for the liquid layer which results in the following stress

field,

zZZ 0O o] (23a-~f)

where uo=0 because neither viscosity nor damping effects are
considered in the liguid. The components of the displacement

field are determined from equation (22),

=}
It

@

=

{(24a-c)

o
]
i
Q2

€I
o1
o

1=
Il

Q?

|
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where u0=0 due to the axial symmetry of the problem.

Similarly, from the viscoelastic field equation
derivations of Appendix A, we know that it is preferable to
solve the vector Helmholtz eguations by using scalar potentials.
The longitudinal and (vertical shear) transverse parts can be

represented by the following expressions,

L L | (25a-c)

where Ez is the unit vector in the z- direction for cylindrical
coordinates. Since the stress tensor is a function of strain,
and strain is a function of displacement, it is necessaryv to
describe the displacement field for the viscoelastic field

first (See Appendix B).

U=y (93 0,0)
2 T) {(26a-c)
Again, due to the axial symmetry in the problem, u0=0. Sub-

stituting equations (25), (26) and (2) into the stress-dis~

placement relation given by (21) yields:



11

T 22 =2 .
Grr— AkL¢L+2p3r(¢L+BZ¢T)
o =—Xk26 +2ﬁla ($.+3_3,)

o0 L°L rr' 'L "z'T

T 2e =2 20 .2
Opp = Ak 0y #2003 0, 43 (kB0 3,) ]
(27a-£)

g =0

rd

Now the stress and displacement fields for the ligquid and
viscoelastic layers are complétely defined. It is worthwhile
to observe that when the second Lame parameter becomes zero
in equations (27}, we obtain equations (23). It was mentioned
previously that formulating the hydrodynamic field in terms

of the elasticity field makes the calculations easy.
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5. Source Representation

In the problems under consideration in the next two
sections a point source will be suspended in the liquid layer.
The effect that the presence of the source has on the differen-
tial equation solutions, equations (12), (13) and (14), is the
addition of a source term, in potential form, to the solution
for the liquid layer. The source term for an unbounded homo-

geneous medium may be obtained, following Sommerfeld (18], as

e—ikoR w0 e—aO]z-zsl
¢s(rfzpw)=-§ _=_£ JO(Cr)EI-O <14 (28)

where R=//f2+(z-zs)2

In order to add this source potential to the solution for
the liquid layer it must undergo a Hankel transformation as
did the previous differential equation for the ligquid layer.
We find that this can be done simply because Sommerfeld's
source representation, equation (28), is conveniently in the
form of a Hankel transformation. The Hankel transform of

equation (28) is

- e_ao'z"zsl
¢_(C,2,0)=< (29)
[ a
o
and now equation (12) may be written as:
3 ¢ )=A_(z,u)e %o%+B_( m)eaoz+9fa°!z_zsl (30)
¢O L,2,w)= o C,w)e "o o GCor a

L&)



13

6. Solution of the One-laver Prcblem

This section is concerned with obtaining the formal
sclution for the problem of a source suspended in a liguid
layer over a semiinfinite viscoelastic subbottom. The geonetry
of the problem is shown in figure 1. Our concern will be with
adapting the information of the previous sections to describe
the problem at hand. Recalling equations (30), (14) and (13),
we may write the transformed potential functions for this
problem as special cases. For the liquid only a longitudinal

field potential exists. We write eqﬁation (30) as

-a_[z+(h ~h )|
o®+B_(z,w)e®o®+S © © s
o a,

a

$o(c,z,m)=Ao(z,w)e' (31a)

where in equation (29) zs=(ho—hs) from figqure 1. Furthermore,

before the application of the boundary conditions, it will be
necessary for us to classify the liguid potential 56 as a po-
tential above the source Eé and a notential below the source

$£I, where

«I_ -a z a_z, e%ol2+(hy-hy)]

¢0—Aoe o"+B_e’o +EO z<—(h0-hs) (31b)
zII_. -a z a z e_ao[z+{ho-hs)]

¢O one o +Boe o +Eb z>~(ho—hs) {3ic)

Two potential functions exist in the viscoelastic
subbottom, namely one for the longitudinal field and one for
the transverse field. Sihce the subbottom is ur“ounded in the
2—- direction, the parts of equations (13) and (14) represent-

ing upward traveling waves vanish due to the non-reflective
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property mentioned previously, and equations (13) and (14)

become:
- -a_z
¢L(c,z,wl=AL(g,w)e "1, (32}
- -a_z
¢T(c,z,m)=AT(e;,w)e T {33)
We must sclve for the four integration constants Ao' Bo' BL

angd BT using the applicable boundaryv conditions. The boundary
conditions that will prove to be most useful to us (see, e. g.,
Ewing, Jardetsky, and Press [2]) are at z=-h0,

(0,,),=0 (34)

for the water surface, and at z=0,

(Uzz)o=(czz)l (35)
(uz)o=(uz)l {36)
(Grz)o={crz)l=o (37)

for the liquid-viscoelastic interface, where the subscript o
refers to the liquid and 1 refers to the subbottom. We recall
that the liquid cannot sustain a shear stress. Applying the
boundary condition at z=-—hO to the expression for the potential
above the source in the ligquid gives:

h —a0h0+gfaohs

- a
O—Aoe o) o+B0e (38)

o)

If one eliminates Bo from this, the expression for the liquia

potentials above and below the source may be written as:

=-2A eaohosinh[a (z+h ) ] (39)
o o o

i} ah_ . 2, _

=-2A _e"o os;n@[aotz+ho)] agsxnhfao(2+ho h,)1  (40)

By applying the three boundary conditions at z=0, and using
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the expressions for the stress and displacement fields in

equations (23), (24) and (27}, we may write the following

matrix expression for the unknowns Ao’ AL and AT

C).

[ ah 2 ‘r 1
ZaOe fo) ocosh(aoho) ap Y 4 Ao

2 .2
0 —2aL (2C -kT) A

ZQowzeaohosinh(aoho) -ﬁ1(2§2—k£) 2ﬁlaTc2 .

A b L

(

e

See Appendix

2cosha (h -h )
oo s

0
200m2

a
QO

We are interested in the solution for the acoustic

field in the liquid, so we solve for A in equation (41) using

Cramer's rule. A
br = e . . A _ l
o A
o
2cosh[ao(ho—hs)] ay
where &l= , 0 —2aL
20 w _ 2 9
- 31nh[ao(ho~hs)] -pl(zg -kT)
~-2a eaohocosh(a h ) a
o] ol o] L
and Aoa 0 -—2aL
2 ah__. = 52,2
2pom e o 051nh(aoho) ul(2c AT)

Expanding equations (43) and (44) gives:

4
2 YPo® By, 2 2 .22
Al a_ c2 Slnhao(ho—hs)+aoplcT[(2g —kT)
T ]
e w41
. h o “L . 2 2
A =-2e® =X
o e 0o cz q1nh(aoho)+aoplcT
T

_€2
(2c2~k§) (43)
2ElaTt2

‘Cz
(202-x2) (aa)
ZﬁlaTcz

2
—4aLaTg ]coshao(ho—hs%

{(45)

2 .2 .2 2. ,
[ (2% LT) 4aLaTC Jcodh{acnoﬁ

(46)

ta2)

sinha (h -h
0o o s

{41
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Substituting equations (45) and (46} into (42) vields:

z.
A TC.JCOdhao(ho_hs)
o a_
fo)

4 . Py 2 2,2
k s - — - -
-aohoS.TaL lnhao(hO hs)+aooo[(2g kT) 4a; a

4. P1 2 2,2 2
{kTaL51nh(aoho)+aoB;[(25 ~kT) —4aLaTc ]cosh(aoho)

(47)
In the discussion of the multilayer problem that lies ahead

we will find it helpful if Ao is expressed in a more compact

form. We may write a condensed version of equation (47) as

-a h A7
Aeoo

1
> (48)
o aj Ao

where Ai and A; are clearly defined in equation (47). Now
that Ao has been determined, the expressions for the liquid

potentials above and below the source immediately follow:
-1 28inh[a (z+h )]
I_ o 0

o a
o)

k4a sinh[a (h _~h ) ]+a E—]ll_'(Z 2 k2)2 4 2
T4, oo s op, b kgl -dagang JCOSh[ao(hcf'hs_):I

x

4 Py 2 .22 2
kTaLSth(aoho)+aOE;£(2C ~ko) -4aLaTC ]cosh(aoho) 49)

$II_2Sinh(aohs)

X
O a
O

A P1r,,,2 .2 2 2
kTaL51nh(aoz)+a05;{(2c —kT} ~4aLaTc ]cosh(aoz)

(50)
kiaLsinh(aohO)+a0§i[(2;2-k£)2—4aLaTc2]cosh(aoho)

These results agree with those predicted by Ewing, Jardetsky,

and Press [2], and Officer [15].

The potentials in the liguid layer haviny been deter-

mined, we are primarily interested in the pressure recorded
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by the recelver in the liquid. The state of stress described
by equations (23) is clearly hydrostatic, and the pressure is
taken as the negative of the stress. Making use of identities
from egquation (1) and (3),

v2¢o=“k§¢o

10k§=pow2
the pressure in the liquid in terms of potential is just

By (z,z,0)=p_u’h_ (51)

In the experimental program it seems logical that the receiver
will be suspended above the source f&r optimum reception, so
equation (50) combined with equation (51) is the formal solu-
tion to the problem. To obtain the expression for the output
pressure as Po(r,z,t), where the r and t dependence has been

recovered, we must perform the inverse Hankel transform in

space and the inverse Fourier transform in time.

- _ 2% -
Po(r,z,w)—pow { ¢o(c,z,m)Jo(cr)€dc (52)

[++]

1 it 2% - -
Po(r,z,t)=§;oo{ duel®ty, { ¢o(crz,wJJo(cr)cdc (53)

Evaluation of the double integral in equation {(53) may be
performed numerically, or the integration can be done in the

complex plane using Cauchy's theorem,
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7. General Solution of the Multilayer Problem

The present problem is a generalization of the problem
treated in the previous section. The viscoclastic subbol Lom
is assumed to consist of n parallel layers as shown in fiqure
2. 1If we attempt to solve the n-layer problem by continuing
along the lines of section six,for each additional layer we |
consider, the dispersion matrix of equation (41) will increase
dimensionally from a 3x3 matrix to a [3+(n-1)4]x[3+(n-1)4]
matrix. For example, the two viscoelastic layer case would
result in a 7x7 dispersion matrix, etc. It becomes apparent
that for multilayer problems the complexity'of the calculations
involved increases dramatically. In fact it will be helpful to
employ computer techniques for these problems, however, when the
matrices involved become very large, computer time increases
and memory space becomes exhausted., Therefore, the primary
purpose of this section will be to obtain a formal solution of
the multilayer problem, through the development of recursion
relations between adjacent layers, whereby matrix size does not
increase beyond 4x4.

Similar to the discussion in the previous section, we

write the liguid and viscoelastic layer potentials as follows:

0 th Layer (liquid layer)

_ _ ' ~a_|z+(h_-h V|
$ =A e 20%4B e®oZ48_ 0 © s
o ‘o 0 ag
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1 st Layer

- - -a Z_ a Z
¢y,17A 8 L17+B (€Ll

T -a_ .z a_ .z
¢T1 ATle T1 +BTle Tl

n th Layer

oy, z

_ ~a. _z a
n-ALne Ln +BLne Ln

z
¢T

a
e Tn

n=A Tn

-a z
Tne T™n +B

(n+l) th Layer

-~ _ -a 2z
L (n+1) AL (n+1) € Lintl)

- _ -a z
S (n+1) Pr(ns1y® T I0HD)

The (n+l) th layer is a halfspace, so no B, and B, terms exist
due to the convergence requirement mentioned previously.

For each interface the boundary conditions discussed
in section three are applied. The boundary conditions are
that the radial u.. and vertical u, components of the displace-
ment and the normal S and shear g., Stresses are continuous
at the interface separating twe different media. If the most
general case is taken, say for the (i+l) th interface (sce

figure 3}, then the boundary conditions can be written from

equations (26) and (27):

i) u. continuous at z=hi:'

3% 200170 (141) P O2 % (141)
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Or, for compactness, where (i+1)=1"':

h. h, -a_.h. a_.h,
[ 'l » p - . =
ALle Ll i BL e L1 i- aTlATle Ti 1+aTlBTle Ti 1

~a_ ., h, a_.,h, ., h. . h
ALi'e Li' 1+BLi,e L1'h1—aTi,ATl,e T1'h1+aTi,BTi,eaT1'h1

ii) uz continuous at z=hi:

- 2- 2 - .- 2- 2 -
3z¢Li+(az¢Ti+kTi¢Ti’“az¢Li'+(3z¢Ti'+kTi'¢Ti"
note that

(9 +k

or

~a_.h. a_ .h, _2 h. h,
—aLiALie Li l+aLiBLie Livi+g (ATie Tl 1+BT e?ri i)=

Li,ALi.e"aLi'hi+a .,BLi.eaLifhi+c2(A

-a Li Ti.e"aTi'hi+BTi,eaTi'h

iii) g,, continuous at z=h,
“XikiiaLi+zﬁi[3§5Li+az‘3§$Ti+k§i5Ti’]z
hii'kgi'6Li'+2ﬂi'[32¢L1'+3 (a ¢ ;1'¢T1')]

or

~a_.h, a_.h, 2 ~a,,.h, a,.h, -
u [(Zr —k )(A ;© Li 1+BLie Li 1)+23Tic (_ATie Ti l+BTie Ti i) J=
b (2g%k2 ) (A, Li'hi+BLi,eaLi'hi)+
2 -a,.. ,h, .. h.
27 Ti'(_ATi'e aTl'h1+BTi,eaT1'h1)] (56)

23

(54)

1)
(55)
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iv) o continuous at z=h,:
TE i

- o = 2 02 - - ~ 2 .2 = .
Ui[zaz¢Li+(2C -kTi)¢Ti]_ui'[282¢Li'+{2C —kTi')¢Ti'J

or

- -a. . h, a_.h, 2 .2 ~a, .h, a,.h, -
ui[zaLi( Apje Li 1+B, e LiTi)+(2g "kTi){ATie Ti itB..e T3 i) 1=

a. ., h,
.0 Li'i

-a. ., h,
+
e Li'i BLl

2.2 -3, h, 1Dy
(2§ _kTi')(ATile aTl' l+BTileaTl‘ i)] (57)

The four equations (54-~57) in the eight unknowns ALi' Li*

A B_., A

Ti' Prif PL(i+1)’ Bri+n)c Br(is1) @0d Bpyeq) may be

written in matrix form as follows

21+1)257B 141y P (i41) (58)
where a(i+l) and B(i+l) are 4x4 matrices and Ai is a column
vector for the coefficients of the potentials for the i th

layer,
-
Arj
B_.
A = ALl (59)
Ti

By

and similarly, for A(i+l)'
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AL(i+l)
BL(i+1)
Ay (i+1)
| P (iv1))]

A(i+l)= (60)

The matrix A (3141) is constructed from the coefficients from
equations (54-57) of the terms associated with the elements
of the ii vector. The exponential functions may be factored

out of the a(i+l) matrix, resulting in the following expression

qi+1) 72 (1+1) € (141) (61)
where
1 1 ~an Ang
2 2
aLi A 5 5
a’. =
(i+1)5|~ o 2 2 -2 .2 - 2 - 2
My (287 -kpy ) wg (287-kgy ) —2n5a0,8 0 2uya0,8
- - - 2 2 - 2 2
~2ugap . 2uiay My (287 ke b uy (227 -Kg4)
and _ T (62)
e"3ili o 0 0
a_ . It.
_ 0 e Lii 0 0
®i+1)” n (63)
0 0 e Ti'i 0
| o 0 0 el

An expression for the B(i+1) matrix may be written similar to

equation (61)
Bi+1) 7B (1+41) ® (1+1) (64)

where

BT 542) (65)

and



e oL (1+1) Py 0

. 0 &2 (i+1) 0y
Ci+vl)” 0 0
i 0 .0

From equation (65),

0
0]
e 37 (i+1) 13

0

it is seen that the B’

(i+1}
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. 0
0

0

e?r(i+1) By

matrix is

(66)

formed by replacing the subscripts (i) in equation (62) with

(i+1).

[afi+lle(i+l)]Ai=[BEi+l)eEi+1)JK(i+l)

Equation (58) or (67) is a recurrence relation relating the

Using equations (61) and (64) in equation (58) gives

(67}

coefficients of the i th layer's potentials to the (i+1) th

layer's potentials. This recurrence relation can be succes-

sively applied for the n-layer case, i. e., referring to
figure 2:

i) for the (n+1) th interface

2 (n+1) 2078 (n+ 1)® (1) (68)
where
AL(n+l) |-ALn
- 0 B
A = = |~Ln
0 Tn
| Prn)
ii} for the n th interface
anA(n-l)anAn (69)
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iii) for the (n-1) th interface

a(n—l)s‘(n—2)zn(n—l)]—\(n—l) (70)

iv) for the third interface
a A, =B A, : (71)

v) for the second interface
a2§1=B232 (72)

vi} the first interface is a special case, since

- -

ALo

BLO

3
i

and uo=0. In addition, a source term must be included in the
equations for the boundary conditions of the first interface.

Now solving for A, in equation (72),

- _=1_ =
Al~a2 B2A2 {73)

1

-1
where a, is the inverse of the ay matrix. Form equation (71)

A2=a B A (74)

substituting equation (74} into equation (73) gives:

= -1 -
Al=[a2-32][a3 B3]A3 (75)
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This process can be repeated for all layers, resulting in
= -1 -1 -1 -1 -1 =
A= B B PP .

(=laj By lay B 0la, "By l.. . [y B 12 41y B (ne1) Boeny (78
This result implies that the potential coefficients of the
first solid layer are related to the potential cocfficients
of the last, (n+l) th, layer by a matrix expression of the

form

Alei(n+l) (77)

where

r.-1 -1, -1
M-—[a2 B2][a3 83]""[a(n+1)B(n+l]]

is a 4x4 matrix. Denoting the element of M in the i th row

and j th column by mij' we have

My M Mz Mg
m2r M2 M23 M4
M= m m m m (78)

31 32 33 34
Lm41 Myp My3 Mg

From equation (68), we see that it is possible to write the

elements of Kl in equation (77) as

AL 17380 (1) T3P (n+1)

B 1=My 1AL (n+1) 72307 (n+1)

_ (79)
Ap1™M312A7 (n41) T33P (1)

Bry™Mg180 (n+1) 10430 (ne 1)
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where BL(n+l)= BT(n+l)=0'

At this time we will consider the first interface and
introduce the source term into the equations for the boundary
conditions. Recall that the potentials for the liguid layer

are

=I__ ah . -
¢ =—2A_e"o 051nh[a0(z+hO)J (39)

for z<—(h0~hs), i. e., above the scurce, and

=IT_ ah_ _, 2 _
b, =—2A_e%o osmnh[ao(z+h0)] 3 s:r.nh[ao(z+h0 hs)] (40}

o
for z>~(ho-hs), i. e.,, below the source. In both eguations
(39) and (40), the boundary condition at the 0 th interface
{the water surface) has been used to eliminate B, in equation
{30). The applicable boundary condition on the water surface
is that o,  is zero, or equivalently, that EO=0. We may write

the expressions for the potentials in the first solid layer as:

$L1=ALle—ale+BL1eale (13)

- -—a_.2 a_ .z
bp1=Ar® T HBp e TL (14)

The three boundary conditions that apply to the first interface

are at z=0:

(czz)o=(czz)1 (35)
(uz')0=(uz)1 (36)
(o) =(o__).=0 (37)
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Applying equations (13), (14) and (40) to the boundary con-
ditions results in three equations in the fivae unknowns Ao’
ALl’ ATl’ BLl and Bnyr SO the system of three equations is

indeterminate. The eqguations for the boundary conditions at

z=0 can be arranged in matrix form as follows (See Appendix

D):
] ah 2
—ZaOe o) ocosh(aoho) aLl —a;, -z
_ 2 ah . - 2 .2 - 2 .2 - 2
2p0w e o 051nh(aohol ul(ZC —le) ul(EC —le) —2ulaTlc
. 2,2
- 0 2aLl 2a; (2 —le)
—gz ] FAo - -2cosh[a (h ~h )] ]
oo s
2GlaTl;2 A1l 2o w?
B |=|—5—sinh[a_(h_-h_)] (80)
2 .2 L] % e ° s
(2 —le)
4 A 0
71| L d
Brpy1

The indeterminacy in equation (80) can be eliminated by apply-
ing equations (79). Equation (79) and (80}, when combined,
yield a determinate system of seven independent equations in

seven unknowns. We eliminate the variables 17 and

L1’ Brir Amy
By in equation (80), using equations (79), giving the follow-

ing matrix expression.



~

a h
-2a o cosh h
2ﬁ0t 0 0Cos (aO O)
2 anh .
-2p w'e“o osinh(a h )
¢ (oI o)

0

apy {my,m

2
1) 76 (mgytmyy)

31

- 2.2 2
“1[(m11+m21)(2c _le)-(mal—mql)ZaTlc 1

2 2
m2ap g (my ) mmy 14287~k ) (mgy 4wy )

2
apy (M3 My 3) -7 (myg¥m, )

- 2 2
Wy Dy g4my 3) (287 -Kpg

2

m2apy (my gomy b+ (207

)=

Mq3=Myq)2

{m, ,+m

2
T1 33

oA
O
2
apy & ] AL(n+l)
43 Ap(ne1)

Equation (8la) may be rewritten as

-

~-2a eaohocosh(a h )
o o o

2 a h .
—Zpow e 0 051nh(aoho)

where

b

-

20 _w

P12 P13
Pyy Dyq
D3y Pig

_ 2
127871 My =My 1 =2" (myy+my, )

_ ) 2
Byg=ap; (myy-mya) =7 (my 4m, 5)

- 2 .2
byp=Hy [lmy#m,0) (227 -k )~ (m

- 2
by 3=y [my y4my5) (207 -k

2
p1) ~{myqmm, 502

_ ) 2 2
byy=-2ap, (my, mzl’f‘zc kpp) (mgytmy )

— _ 2_ 2
byy==2ap; (mysomy )+ (207 -k ) (myqtm, o)

[ -
ZCosh[aO(hOI hs?]
2

a

ZCosh[ao(hO"hs)]

20 w2

- o i -
. 31nh[a0(hO hs}]

0

{81a)

sinh[ao(ho—hs)]

{81b)

2
31" My1) 280 7]

2
LR,
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We arc interested in the solution for the acoustic field in
the liquid, so we solve for AO in eguation (8ll) using

Cramor's rule

-ah AS
. %% M
AO_ a & - (48)
o o
where
aocosh[ao(ho—hs)] b12 b13
. 2 . _
&l— P W 51nh[ao(ho hs)] b22 b23 {82a)
0 byy Pij3
and
aocosh(aoho) b12 b13
& ={p w?sinhia h) b.. b (83a)
o o] 0 0 22 23
0 biy b3

Expanding equations (82a) and (83a) gives

KyFagcoshia, (h~h Y 1{4ujap ) (20%-kn) ) C 1y (287 kg ) “C o+ ap jan 290,
- 2 2 2 2, 2
+4ulaTla (2¢ —le)C4}-pom 51nh[ao(ho-hs)]{-aleTlCS} (82b)

and

2 2

. - L2 - .2 2.2 -
Bo=acoshla h ) {duyay ) (20%-kp )C +uy (287K 1) “Cotdig e jap, £9C,

- 2.2 2 2 2 _
+4ulaTlC (2¢ le}C4] SPRE olnh{aoho){—aleTlCS] {82}
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where

C ™My My370) 3y

Co= (myp¥my ) (mggbmy o) = (mgy 4my ) (my g4, o)

Ca=(my 3=myq) (mgy-my )= (my g =myy ) (myg-m, o) (84a-e)

Cp™My N33 M3 1My 5

Co={myy-my ) ) {mgqtmy g) = (g +my ) (my g-m,y )

It should be noted that equation (48) reduces to the result
for the n=0 case {(cone viscoelastic la}er) developed in the
previous secticon. For n=0, equation (79) reduces to a
trivial identity,

A A

L17°L1

Apy=Amy

or m,.,=1 and m 1l

11 337 1170 M33%
and mij=0 for i#j in equations (84) gives the values of C

1, and mij=0 for i#j. Setting m..=1,

1-5

in equations {82b) and (83b) which result in the expression
for Ab for one viscoelastic layer. Of course, siice this new
method yields an expression fox A for the one-laver case

equivalent to equation (47), the subsequen!' double integral
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for PO will be identical to equation (53). Thus, we have
developed a schieme whereby, deternining the components of
the M matrix of equation (78) and using ecquation (8la), AO
can be found. TLet's look at a multilayer problem using this
scheme.

We will consider two viscoelastic layers to illustrate
the use of the more general method described in this section.
The geometry of the problem is shown in figure 4, which is a
special case of the n-layer problem, figure 2, with n=1l. The
expression for the coefficient of the acoustic potential, Ao'

is taken from equation {(48).

-

e—aoho A

1
A Feem——— (48)
(o) a0 AO

The expansions for Ai and A; involve the terms Cl—S' which in
turn involve mij factors. The mij factors must be calculated
for n=1, with mij defined by equations (77-79). For n=1, these

equations become

A, =MA (85)

where
M=[a}"B,] (86)
and .
Ap1™M11PL 07 ™) 3Ry,

Bp,17M1 21,27 My 380,

. (87)
=m,.A . +m..A

Apy TRy A 5¥Maad,,

By Ay 0¥ My 2Py
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To find A
O

appearing in equation (87) need to be calculated.

term in equation

(65) as

where

From eguation (62)
i 1
~aL2
B .=
? I (2@2*k2 )
2 T2
~2uyar,

a2

- 2.2
by (207 ~kp,)

2uya 5

and from equation (66)

p—

eHaLZhl

0

The term a

{(61), (62) and (63)
where
[ 1
8
Bo= 2

- 2
by t2g ke

2”1 L1

2,2
ul(2g -k

0

e?r2™M

0 e

.1

71

2alaLl

for the two-layer case only the mij

(86) can be written from equations

-d

T2
.2
- 2
2us8n,%

2 2
u2(2c —sz)
0 0
0 0

ap,hy 0
0 ey

;1 in equation (86) must be computed.

“&pq

- >
"2k18myt

by (2 LTJ)
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coefficients

The B2
{64) and
(88)
(89)
)
c2
(90)
2u.a c2
2 T2~
2 .2
{31)

Trom equatiocons

(92)
a3 9
(Tl
r,2
2 (93}
2u1amig
.22
r ( !\J "'};,.Pl)'
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and
M o 0 0
0 1M 0 0
e,= - (94)
2 0 0 "1™ o
0 0 0 e*raM
To obtain a;l, from equation (92), we make use of the matrix
relation for the inverse of the product of two matrices.
-1_ -1,..,-1 :
From equations (85), (88) and (95)
— -l - _1 -

After considerable algebra the mij coefficients of equation
{87) and, finally, Ci-5 from egquations {(84) can be calculated
(See Appendix E). Again our scheme has given us an expression
for AO and subsequently for the double integral Po‘ The re-
sults égree with those obtained by expanding the 7x7 dispersion

matrix as prescribed by the earlier method used.
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III. RESULTS AND DISCUSSION
1. Summary

The expression for the acoustic response due to a point
source excitation in a liquid layer overlying a multilayer vis-
cocelastic subbottom has been determined. The expression impli- -
citly includes the contribution of the viscoelastic subbottom
lying below the liguid, a result of coupling phenomencon between
adjacent layers. The input-output pressure relationship appears
in general integral equation form, a double integral in fact,
due to Fourier and Hankel transformations, in the temporél and
spatial domains respectively. The stress and displacement fields
in both the liquid and viscoelastic media were determined as a
necessity of applying the boundary conditions at existing in-
terfaces.

The primary innovations in the multilayer techniques
used include the development of recursion relations between
adjacent layers to find the liquid layer potential more easily
and the introduction of complex wave numbers to describe the
damping of the viscoelastic medium. The problem of expressing
the liquid layer potential for multilayer problems has been
reduced to determining eigh£ components of a 4x4 matrix and
using these in a simple matrix equation. A convenience of the
method developed is that no matrix used exceeds 4x4 dimensions,
allowing the employment of a computer to aid in the calculation
of potentials with a miv -wum of time and cost. Tie existence

of complex wave numbers the expression for the liguid layer
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potential indicates that evaluation of the doublce intcgral can
be done performing an integration in the complex plane using
Cauchy's theorem. Complex variable techniques include the
algebraic search for roots and branch cuts. The integration
will yield a functional relationship between the unknown Lame

constants and the density of the viscoelastic subbottom,
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2. TIecommendations

The scope of the present investigation is limited due
to the simplifications in the model used in this treatment, the
assumption of plane boundaries, etc. The model could be made
more realistic by including the effects of medium inhomogeneities
and bottom roughness., Medium inhomogeneities can be incorporatcd
into the model by introducing perturbation techniques. In this
case it seems likely that perturbation would be performed about
the density parameters. Bottom roughness can be accounted for
in a more sophisticated model by employing statistical methods.

The advances in multilayer analysis, introduced by this
thesis, suggest the use of computer studies for the solution of
n-layer problems. The computer may also play an important role
evaluating the double integral, obtained in the formal solution,
either by numerical methods or complex integration. An invest-
igation of the limiting case, where the depth of water covering
the viscoelastic layers becomes infinite, would be helpful for
modeling tests where a single short pulse is reflected off the
subbottom and the first bottom return is analvzed. This type

of test is the most frequently performed and simplest to analy:ze.
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APPENDIX A

Dexivation of the Hvdrodynamic and the Viscoclastic Ficld

Equations
The equation of motion (kalance of the rate of change
of Jinear momentum) describing a fluid, known as the Navier-

Stokes eguation reads

k. 1. X X
p(atv VTR, v )-aloklupF {(rh-1la)

where Fk is the body force resulting from an external field,
91 is the stress tensor, and vk is the velocity vector. Since
we are considering a hydrodynamic field, which cannot sustain

shear forces, the stress tensor does not contain a deviatoric

part, thus
_ .kl
O q= pd

and the Navier-Stokes equation hecomes

p(atvk+vlalvk)+p6kl=ka {(A-1b)

Two other relationships that prove to be helpful in describing
the hydrodynamic field are the continuity equation (conserva-

tion of mass density).,

k—
Btp+ak(pv 1=0 {(A=-2)

and tho eguation of state (constitutive relation),
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2 b= (p/2p) 12%0 (A-3a)

or
k 2.k
] prcoakp (A-3b)

Now, we linearize equations (A-1}, (A-2) and (A-3) by defining

a set of perturbation parameters,

vE(E, £)=0+35 (Z, t) (A-4a)
p(f,t)=p0+B(E,t) (A-4b)
p (¥, €)=p +5 (¥, ) (a-4c)

where for the no-flow regime, vz=0 and the superscripts ™

refer to the fluctuating part of the variable functions, We

obtain
vk kv = -
poatv +37p=5, (A-5a)
" “K_=s -
Btp+p03k? —52 (A-5h)
2¥B-c20%p=0 (A-5c)

where §l and §2 are force terms or eguivalent source terms
conposed of higher order non-linear terms responsible for tur-
bulence.

By omitting these higher order terms and returning

from tensor notation to vector notation we have the following
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homogencous equations:

pontG+vpco {(A-6a)

pV.v+3 p=0 (A-6b)
2

Vp-c_Vp=0 (A-6c)

Subtracting equation {(A-6c¢) from eguation {A-6a) and taking

the time derivative we cbtain
2- 2
poatv+covatp—0 (A-7a)

Substituting for 3P from equation (A-6b) we obhtain

2—- 2 -
poatv+coV(—pOV.v)=0 {(A-T7h)
or
- o
V(V.v)—ifatv=0 {A-Tc)
o]

Thus far we have developed the hydrodynamic field
from the fluid dynamics point of view. Due to forthecoming
boundary condition considergtions, however, it is conven-
ient to describe the fluid from the elasticity point of view
in order to establish a basis of comparison between the
viscoelastic and fluid media. We accomplish this simply by
describing the fluid in terms of displacement. Since G=3tﬁ,

equation (A-7c) may be written as

n 12'\'__
V(V'(Btuo))h_fa (otuo)—O (A~-74)

C
O
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At this time if we define the Fourier transform pair, linking

the time and frequency domains, as

R(w)= S X(t)e iwtgy

. | (a-8)
x(t}-’-‘%? f F{(m]elwtdw

we obtain from egquation {A-7d) the following vector equation:

- 92—
V(V.u0)+kouo=0 {(A-7a)

If we define the displacement potential for the fluid as

uo=V¢o {A-9)
it follows that
7(v2¢ )+x3ve =0 (A-10a)
O (o] O
or
VI(v2+k2)6 1=0 (a-10b)
[&] o

Without loss of generality, we may write the scalar wave

equation for the fluid as

2.2y, _
(VE+k ) ¢ =0 (A-11)

where the integration constant arbitrarily has been set

equal to zero.
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We are also interested in deriving an expression
for the dynamic behavior of a homogcneous, isotropic visco-
elastic solid of density p. The eguation of motion describing

the viscoelastic field reads

2.k _ =k -
pa £V —Blckl—oF (A-12a)

where Fk is the body force resulting from an external field,
1 is the stress tensor, and uk is the displacement vector.
We are primarily interested in the solution of the homogeneous
form of the viscoelastic field egquation, since solutions of
the inhomogeneous equation may be obtained by superposition.

We write the homogeneous viscoelastic field equation as:
2 k
patu —alokl 0 (A-12b)

The constitutive relation in the Hookean regime is
%1 Bk 1mn®mn (A-13)

where for a homogeneous and isotropic medium one writes

Eklmn=l(gklgmn)+u(gkmgln+gknglm) (A-14)

and for a linear regime

=1

Eon 2(3 u +B ¥ } (A-~15)

js the strain tensor. In‘equation (A-14), X and u are known

as Lame constants, and for the Voigt viscoelastic model they
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become time dependent operators

A=A+ at

(A--16)
H=Y AT 9,
Substituting equations (A-13), (A-14) and (A-15) into equation
(A-12b) and noting that the metric 931 in Euclidean space is

nothing but Kronecker delta, § we obtain

kl’

paiﬁ-(x+u)V(v.ﬁ)-uvzﬁ=o (A-17)

Taking the Fourier transform in time, according to the trans-

from pair defined by ecuations (A-8), we obtain

2 2. ke -
(v +kT)u—(l——§)V(V.u}=0 (A-18)
k .
L
where
kL=w/cL kT=w/cT
A= +iek ” p=l Fioy (A-19)

2_ = .- 2 -
cL—(A+2u)/9 Co=u/p

Separating u into longitudinal and transverse parts,

u=u, +1u (A-20)

and performning vector manipulations on equation (A-18), we

obtain two vector Helmholtz equations as follows:
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(v 24k

2
= ~21
L)uL 1] (A-21a)
(V2+k,jz1)ﬁ,r=0 (A-21Db)

It is preferable to solve these vector wave eguations by using
scalar potentials. The longitudinal and the (vertical shear)

transverse parts can be represented by the following expressions
u =9, (A-22a)

\

- S -
= - \
U VxVxez¢T {A-22b)

where 52 is the unit vector in the z-direction for cylindrical

coordinates, and $L and ﬁT are known to satisfy the following

relations
(V242 h =0 (A~23a)
(724K 2) $,=0 (A-23b)
wvhich will be used in our calculations., In general there are

two types of transverse shear waves, the horizontal shear and
the vertical shear, but, due to the type of excitation intro-
duced 1n the problem at hand, a dilitational point socurce, the

theory of elasticity predicﬁs that we should consider only the

vertical shear component.
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APPENDIX b

Derivation of the Displacement Field for the Viscoelastic

Medium

The superposition of cquations (A-22) describes the
disvlacement field for the viscoelastic medium. Since these
equations define the longitudinal and transverse displacements
implicitly, we need to develop explicit expressions and sub-
stitute these into equation (A-20). Considering the longitud-

inal displacements first we obtain

- _ - 1 - _
UpmVe =3 dre i3 ey i e, (B-1)

The transverse displacement given by equation (A-22h}

will be developed in aceordance with the folliowing formula,

h
v»:vm"x:hiﬁz[auz{ﬁ?}z-[aul (h,A,) -3, (hya) 1)
h2 _
_au3{5135[3u3(hlAl)—aul(hBAB)]}]el
1 h3
*HIHg[aul{HIH;[Bul(thz)-auz(hlﬁl)]}
(B-2)
hl _
_8u3{H;H;[au2(h3A3)—au3(h2A2)]}]e2
1 h2
+HIE;[BU1{EIK;[QU3(hlAl)—Bul(h3A3)]}
hl _
—Buz{ﬁgﬁglauz(h3A3)-3u3(h2A2)}}]e3

which is true for orthogonal coordinates. TFor cyvlindrical

coordinates, in narticular, we have



(B-3)

By letting §=EZ$T we can easily obtain the compencents of the

transverse vertical shear,

2 - 1.2

- 2 0 1.2
rz®Cr g 008~ (O pontid =59

~VS_ - _
uT ~VxVxez¢TwB = r¢T rz

or by substituting an identitv from the scalar Helmholtz

equation

2

Vs .2 . = 1.2
kg

2 et 3ez¢T

— 2 _ i
—— - '\ —
U= rz¢T o 694(oz¢ )ez {B-4b)

Thus, the total displacement described by equation (A-20)

becomes equation (26} of the text.
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APPENDIX C

Apnlication of the Boundarv Conditions for the One-laver Problem

We obtain the 3x3 dispersion matrix in the text hv
apnlying three houndarv conditions, equations (3%), (36} and
{37}, at £=0, and using the expressions that describe the strecss
and displacemcent fields in terms of potential, given hy equa-
ticns (23), (24) and {27). Of course, we will use the expression
for the liquid potential below the source, while applving these
boundary conditions at the liquid-solid interface. Applving

equations (35), (36) and (37), respectively, we obtain:

2p w2

2 ah ,
{EpOw e“o 051nh{aoho)}Ao+ . Sth[ao(ho—hs)]—

2 = 2 - 2 2
L—AlkL}AL—{ZulaT(kT+aT)}AT (C~1)

{2ula

2, 2 ah
- + =— - - -
{aL}AL {kT+aT}AT {2aoe o ocosh(aoho)}A0 2cosh[ao(h0 hs)] (C-2)

2 .2y
{2aL}AL+{kT+2aT}AT—O (C-3)

Simplifying with the aid of the following identities,

- 2= .2 - 2 .2
2u1aL-AlkL-ul(2§ —kT) {C-4a)
2 2 .2
kT+aT"c (C-4b)
2 2 2 2
kT+2aT-(2C —kT) {C-4c)

and arranging our equations in a fashion such that only source
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terms appear on the right hand side of the equation, we obtain

matrix equation (41) in the text.
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APPENDIX D

Application of the Boundarv Conditions for the Multilaver Problem

In order to obtain matrix equation (80) of the text we
necd only refer to Appendix C and recognize that the solution
of the more general multilaver nroblem requires that we retain
the BLl and BTl terms which disappeared in the one-layer prob-
lem due to convergence requirements. FPor this reason we have
a 3x5 medium characteristic matrix for the multilaver problem

as opposed to the 3x3 matrix for the one-layer problem.
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APPENDIX E

Sclution For the Acoustic Potential for the Two-laver Prohlem

Recall that in Scection 7 of the text we d~veloped a
schoeme whereby, determinina the comnonents of the first and
third columns ¢f the M matrix of eauation (78) and using
equation (8la), the acoustic potential can be found for any
nurber of layers. Note that the text ended after formulating
the solution for the M matrix in the two=-laver probhlem under
consideration. At this point considerable algebra is reguired
to obtain the components of the M matrix, and finally C1_5.

From equation (96) of the text, the expression for M
for the two-~laver problem is

M=1(e,) ™" (az) "M (Bse;) (E-1)

In the text we found each of the matrices ey 2,3& and B.,, so
we nced only perform the matrix inversion process on e, and

‘&, and multiply properly to obtain M.

>
e31103 0 0 0o |
Ll oo M o 0
(e2) = . . o . (E-2)
o 0 0 e-aTlhld
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