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NOMENCLATURE

potential function of the liquid field

potential function of the compression;.1 field for
the n th layer of the viscoelastic rnediunI

potential function of the shear field for the n th
layer of the viscoelastic medium

amplitude functions of the liquid fieldA,B
0 C4-

Ln' Ln amplitude functions of the compressional field for
the n th layer of the viscoelastic medium

amplitude functions of the shear field for the n th
layer of the viscoelastic medium

Tn Tn

transformation parameter for the Hankel transform

wave number of the liquid fieldk
0

complex wave number of the compressio»al field for
the n th layer of the viscoelastic medium

k

transformation parameter for the Fourier transform

sound velocity in the liquid mediumC
0

complex sound velocity in the cornpressional field
for. the n th layer of the viscoelastic medium

c
Ln

complex sound velocity in the shear field for the
n th layer of the viscoelastic medium

cT

complex Lame parameters of the n th layer

density of the n th layer

stress tensor

displacement vector

n'"n

O. ~

u

subscripts denoting coInoo»ents in the radial, cir-
curnferential and longitudinal directions for a
cylindrical coordinate system

r,6,z

Vi

complex wave nuInber of the shear field for the n th
layer of the viscoelastic medium



ABSTRACT

An expression for the acoustic response of a liquid layer

overlying a multilayer viscoelastic medium is determined. The excita-

tion is provided by a point source in the liquid layer. The output

relationship of the system is expressed as a multiple integral using

Fourier transforms for the time domain and Hankel transforms for the

spatial domain. In this boundary-value problem the theories of fluid

dynamics and elasticity provide the basis for describing the hydro-

dynamic and viscoelastic fields. The mathematical model utilizes

assumptions, most of which have proven to accurately describe actual

physical observations, particularly with respect to seismic work in

geophysics. New techniques in this approach include the introduction

of complex wave numbers to describe the damping of the system using

viscoelastic theory. Also a scheme is developed, using recursion

relations between adjacent layers, whereby the potential of the liquid

layer can be found easily. The liquid layer and each viscoelastic

layer is considered to be homogeneous and the interfaces are assumed

to be plane and parallel.
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I. INTRODUCTION

Investigations of reflections from an ocean subbottom

covered with a liquid layer have been pursued for a lung time.

The determination of the subbottom structure and its mechanical

properties are problems of extreme importance and require fine

theoretical as well as fine experimental results. The present

method of approach to this problem area is largely inspired b~~

elasticity theoreticians. Indeed, Lamb's 1904 work [l0]on the

investigation of the earth's elastic properties is generalized

here by covering the earth's surface with a finite depth of

liquid otherwise extending to infinity. Since Lamb's investi-

gation a great deal of work has been done in this area by

1taskell I 3], Thompson I 21], TolStoy [20] and others who have

used plane wave approximation methods or the ray theoretical

approach, as opposed to field theoretical formalisms, without

gaining a keen insight into the phenomenological aspects of

the situation. Others have shown that the ray theory results

can be obtained from the field theoretical approach by applying

proper approximation techniques. These arguments suggest that

the field theoretical approach, which is based on the conserva-

tion laws of nature, is more general and rtrore sensitive to the

physical situation, and thus gives a more complete picture of

~ature. For this reason, field theory serves as the foundation

of this thesis.

New concepts, that contribute to the ir;,p zvernent of

modeling and solving this class of suhbottom probir:g problems,



are introduced in this thesis. The basic improvement is in

the subbottom model which in previous studies has been con-

sidered to be a perfectly elastic medium or layers, whereas

in this investigation, the subbottom model is chosen to be

viscoelastic medium. This is a much better representation of

reality. This generalization is well justified, but from the

mathematical and numerical calculation point of view it becomes

rather costly. Thus the results are new and facilitate efforts

in the fields of oceanography, geophysics, and mari.ne technology

on the understanding and identification of soil mechanical

properties of the subbottom. Also, the results may open new

possibilities for further extrapolations of the subject rnatter

from the geophysical point of view.

In addition to the improvement of subbottom modeling,

a breakthrough in multilayer analysis makes it possible to

avoid the medium characteristic matrix inversion problem con-

sequently saving considerable efforts in the analysis of n-layer

problems. This is accomplished by a simple and new boundary-

iterative formalism which contains matrix theory as the under-

lying algebraic structure.

The theoretical development of this thesis begins with

the introduction of the field equations necessary to describe

the hydrodynamic and viscoelastic models, followed by chapters

detailing the steps that lead to the solution of' the one-layer

problem, and finally the n-layer problem. Since we shall in-

vestigate an axia! ly symmetric isotropi.c medium, the mathematical

formalism is expressed in terms of cy!indrical coordinat~.-.
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XI. THEORETICAL DEVELOPMZNT

1. Field Equations

Ne have at our disposal two fields, namely the liquid

and the viscoelastic fields. The wave propagation properties

of thee fields can be best represented by the following wave

equations  See Appendix A!.

 V +k,!y =0

 V +kL! $L=O �a!

 V +k !y =0 �b!

k =cd/c
0 0

k � Cd/CL k, =Cd/C

~=A +iCdk +iCdp �!

2
'0='0/PO c =  A+2rr! /p 2=-cT=P/P

Here we have defined the hydrodynamic field from the elasticity

point of view by denoting C equated to K /p where A is the2

0 0 0 0

newly defined Lame constant for the liquic . Since neither

viscosity  no shear waves are supported by the liquid! nor.

Here the o, L, and T indices refer to the liquid, viscoelastic

longitudinal and viscoelastic transverse, respectively. Equa-

tions �! and �! were obtained from the field equations by

taking the Fourier transforms in time. Wave numbers for the

viscoelastic field equations are complex because of the complex

rnoduli of the Lame parameters whereas the velocity of sound in

the liquid layer is assumed to be real and constant:



damping effects are considered in the liquid, we can write

the acoustic field wave equations from the viscoelastic wave

equations by simply setting p ta!=0 and retaining the real part

of X ~!. This is very convenient for the stress field descrip-

tions of these two distinct fields as will be apparent in the

forthcoming discussions.

Longitudinal  compressional! and transverse  shear!

waves are not coupled in an infinitely extended medium when

the regime is linear  Hooke's regime!. However, coupling be-

tween these two waves will occur due to the existence of the

liquid-solid interface. In such a boundary coupling case

longitudinal and vertical shear waves will be coupled. Because

their polarization planes are common, energy transfer from one

polarization to the other becomes possible.



2. A~p. roach to the Solution

� +-3 + � 3 +3 +k !$ =0
r r r 2 8 z o o

r

the 3 will vanish due to axial symmetry, therefore
9

� + � 3 +3 +k ! f! =0
r r r z o o �!

Similarly equations �a! and �b! will read:

� + � 3 +3 +k !$ =0
r r r z L L

� + � 3 +3 +k ! $ =0
r r r z T T �!

We would like to use boundary conditions which are on the

boundary planes perpendicular to the z-axis. It is obvious

that there are no boundaries  discontinuities! in the radial

direction, thus we can convert r-dependent operators into

constants by using the following Hankel transform pair  see,

e. g., Sneddon [17]!:

" <! =J' X  r! J   r! rdr
p, 0

X  r! =f X  r! J  <z! qdq
0 0

�!

In the 1Ianl el transform pair g represe»ts the tr i»s formation

Due to the isotropy of the liquid layer and the vis-

coelastic halfspace, there exists an axial symmetry in the

problem. This suggests that the proper coordinate system is

the cylindrical coordinate system. While in general the problem

can be solved in any coordinate system  physical laws being

independent of the choice of the coordinate system!, this

specific choice of coordinates makes the calculations consider-

ably simpler. Thus equations �! and �! need to be written

in cylindrical coordinates. Starting with equation �!,



parameter. The kernel J  ~r! is chosen as the zeroth order
0

Bessel function because of the angular symmetry of the problem.

Note that the Hankel transform provides the following identity:
2 1

J � + � 3 !X r! J   r!rdr=-g X g!2
 8!r r r 0

Therefore, equations �!, �! and �! will be reduced to the

following forms:

- q -k !jg  q,z, !=0
2 2 2

I.3 - < -k ! ]y  q,z,~! =0
2 2 2
z L

[S - < -k ! j0  q,z,~!=O
z T T

Now, the solutions of these differential equations are obvious.

�2!4  <iz<u>! =A  g,v! e o +8  g,+! e o0 0 0

~L v,z,u>! =AL g,~! e L +BL g,u>! e L �3!

4T� z >! =AT C +! e T +DT ~ <! e T �4!

~zz

The exponential terms containing the two integrations parameters

A ~,~! and B g,~! represent downward and upward traveling waves,

respectively. In forthcoming discussions of the one-layer problem

and the multilayer problem we will see that the two integration

parameters A  <,~! and B   ,e! for the liquid layer stay in the0 0

picture. However, for viscoelastic layer solutions, ihe 8  r.,z!

and BT q,~! exponential solutions drop out for the bottom layer

due to the non-reflective property of the semiinfinite medium.



3 . l:ounda~r Cond i t ion s

Boundary conditions are required to evaluate the inte-

ration parameter that arise in the solut' of the field

equations. Later when we consider the pr em of a source

suspended in the liquid layer, the boundary conditions will

lead i;o a dispersion relation which represents the forced

oscillations of the viscoelastic half-space covered with a

finite height liquid layer. Two types of boundary conditions

arise. One is a result of the continuity of mass density.

This boundary condition implies that the displacement is con-

tinuous across the interface between two different media, or

u .=u
ni n  i+1!

 l6!

ti t  i+1!

at the boundary between the i th layer and the  i+1! th layer,

where u is the component of the displacement normal to the
n

boundary, and u is the tangential component of the displace-

ment. The second type of boundary condition arises from the

conservation of linear momentum law. The statement of this

boundary condition is that the stress tensor is continuous

across the boundary, or

nnz nn z.+1!

 l7!

tni tn  i+l!

where o is the stress normal to the boundary, ;nd o is the
nn tn

shear stress at the boundary.



4. Stress and Dis lacement Field Equations

coelastic layers. The stress tensor <.. is related to the
ig

strain tensor c.. by the well-known relation tll],
1. 7

a.,=ke6.,+2pc.. �8!

e=c +c +c =V.u
rr 00 zz

where
 X9!

u=u e +U e +u e
r r 0 6 z z

and

The strain tensor in cylindrical coordinates  r,9,z! is:

2c 6=3 u ~ 3 Q0 1

r6r9rr0r
c =3 u

rr rr

U

C0 0 � 30U9+ 2c =3 u +3 u
rzzrrz �0!

2c = � 3 U +3 U1

9zr0zz9
C =3 U

zz z z

Substituting equations �9! and �0! into the stress-strain

relation given by �8! yields:

a =A  V.u!+2p3 u

U
=>  V.U!+2p  -3 u + � � !

00 r 0 0 r

o =A  V.u!+2p3 u
zz z z

�la-f!

~r9=u� u9-. � + 3 u !0 1
x'9 r r 0 r

=u� u+3 U !
rz z r r z

1=I1  -3 U +3 u !

Xn order to Use the boundary conditions suggested in

the previous section it is necessary to determine the stress

and displacement fields completely in both the liquid and vis-



�! .

From the hydrodynamic field equation derivations of

Appendix A we use

u =V<
0 0 �2!

for the liquid layer which results in the following stress
field,

cr =A V
2-

rr 0 O

a =K V
2

a =A V
2-

ZZ 0 0 �3a-f!

a =0
rz

a =0
eZ

where p =0 because neither viscosity nor damping effects are0

considered in the liquid. The components of the displacement
field are determined from equation �2!,

�4 a-c!

u

For convenience of the calculations, the stress field com-

ponent in the liquid and the viscoelastic media will be written

in terms of the scalar potentials defined by equations �! anti



10

u=u +u

u =V! �Sa-c!

-VS
u =VxVxe

z T

where e is the unit vector in the z- direction for cylindricalz

coordinates. Since the stress tensor is a function of strain,

and strain is a function of displacement, it is necessary to

describe the displacement field for the viscoelastic field

first  See Appendix B!.

u =8  /+8 $ !

uO= � 38  $ +0 g ! �6 a-c!

u =8 $L'+kT$ +3
zzLTTzT

Agai~, due to the axial symmetry in the problem, u =0. Sub-

sti tutinq equations �5!, �6! and �! into the stress-dis-

placement relation given by �1! yields:

where u =0 due to the axial symmetry of the problem.
G

Similarly, from the viscoelastic field equation

derivations of Appendix A, we know that it is preferable to

solve the vector Helmholtz equations by using scalar potentials.

The longitudinal and  vertical shear! transverse parts can be

represented by the following expressions,



0 =-Ak $ +2@8  g +3 $ !

�7a-f!

o =p8 �8 $ +k $ +23 <f !

a =0
Oz

Now the stress and displacement fields for the liquid and

viscoelastic layers are completely defined. It is worthwhile

to observe that when the second Lame parameter becomes zero

in equations �7!, we obtain equations �3! . It was mentioned

previously that formulating the hydrodynamic field in terms

of the elasticity field makes the calculations easy.



5. Source Representation

geneous medium may be obtained, following Sommerfeld [18', as
-ik R Iz-z I

 r, z,u!! =- =I' J  t r!�e 0 e o s
s ' ' R 0 o a /de �8!

where

In order to add this source potential to the solution for

the liquid layer it must undergo a Hankel transformation as

did the previous differential equation for the liquid layer.

We find that, this can be done simply because Sommerfeld's

source representation, equation �8!, is conveniently in the

form of a Hankel transformation. The Hankel transform of

equation �8! is

�9!

and now equation  l2! may be written as:

-a z-z

 q, z ~! =A  ~u>! e o +8  ~~! e o +�
0 0 0 a

0
�0!

In the problems under consideration in the next two

sections a point source will be suspended in the liquid layer.

The effect that the presence of the source has on the differen-

tial equation solutions, equations �2!, �3! and  l4!, is the

addition of a source term, in potential form, to the solution

for the liquid layer. The source term for an unbounded homo-
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6. Solution of the One-layer Problem

-a z+ h -h !
 ggzJ l!!A q,~!co+8 q,~!eo+�0 0 0 a

0
�la!

where in equation �9! z = h -h ! from figure 1. Furthermore,
s 0 s

before the application of the boundary conditions, it will be

necessary for us to classify the liquid potential g as a po-
0

� I
tential above the source $ and a potential below the source

0
� II

where
0

-azazeo a Iz+ h -h !]
0 s=A e o+B eo+�

0 0 o a
0

z<- h -h !
0 s �1b!

-II -a z a z e ao[z+ o s
=A e o +B e o +�

0 0 0 a
0

z>-{h -h !
0 s

�lc!

Two potential functions exist in the viscoelastj c

subbottom, namely one for the longitudinal field and one for

the transver e field. Since the subbottom i s un'ounded in the

z- direction, the parts of equations �3! and {14! represent-

ing upward traveling waves vanish due to the non-reflective

This section is concerned with obtaining the formal

solution for the problem of a source suspended in a liquid

layer over a semiinfinite viscoelastic subbottom. The geometry

of the problem is shown in figure l. Our concern will be with

adapting the information of the previous sections to describe

the problem at hand. Recalling equations �0!, �4! and �3!,

we may write the transformed potential functions for this

problem as special cases. For the liquid only a longitudinal

field potential exists. We write equation �0! as
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prnpcrty mentioned previously, and equations  l3! and  lh!

become:

yg   != L r. ! L �2!

 g,z,e! =A  q,e! e T �3!

We must solve for the four integration constants A , B , B
0 0

and BT using the applicable boundary conditions. The boundary

cond.itions that will prove to be most useful to us  see, e. g.,

Hwing, Jardetsky, and Press [2j! are at z=-h
0

for the water surface, and at z=0,
�4!

zzo zz l

 u,! = u,!,

�5!

�6!

 a ! = a ! 1=0 �7!

for the liquid-viscoelastic interface, where the subscript o

above the source in the liquid gives:
-a h

aheos
o o+�

0

a h
O=A e o o+B e

0 0 �8!

If one eliminates B from this, the expression for the liquid
0

potentials above and below the source may be written as;

=-2A e o osinh[a  z+h ! j
-I a h

0 - 0 0 0 �9!

=-"A e o osinh[a  z+h ! j sinh[a  z+h -h ! j �O!
o o 0 0 a. 0 0 s

0

By applying the three boundary conditions at z=O, and using

refers to the liquid and l refers to the subbottom. Ne recall

that the liquid cannot sustain a shear stress. Applying the

boundary condition at z=-h to the expression for the potential
0



the expressions for the stress and displacement fields in

equations �3!, �4! and �7!, we may write the following

matrix expression for the unknowns A , A and A  See Appendix
0

c!.
a h

-2a e o ocosh a h !
0 0 0 2cosha  h -h !

0 0 sL

�q -k !2a

2p u e o osinh a h !
2 a h

0 0 0 -ul �< -kT! 2
2p a A

We are interested in the solution for the acoustic

field in the liquid, so we solve for A in equation �1! using
0

Cramer's rule.

�2!

2cosh[a  h -h ! 3
0 0 s aL

�g -k ! �3!where 0 -2a
2 L

2p cv 2 2
a sinh[a  h -h ! 3 -P �4 -k !

0 0 s l11
0

22u 1aT~.

2
-2a e o ocosh a !

a h
h

0 L

�r, -k !
2 2

�4!2aand

2-Pl �F - c !2 I 22p v e o osinh a h !
2 a h

0 0 0

Hxpanding equations �3! and �4! gives:

 h -h !+a pic,L �q -kT! -4aLaTc jcosha  h -h !2 2 2 2 2

'I

�5!

inh a h !+a p c,,[ �e -k ! -4a. a, g jco~h a h !2 2 2 2 2-
oo o1T ' T LT

�  !

4
Po" 'L .

1 a 2 o .sinha
0 c

4
p M a

=-2e o o
0 2

CT

h.l
A

0

2
2p

0
sinha  h -h

a o 0 s
0

�1



Substituting equations �5! and �6! into �2! yields:

1 -h
0 s

-a h
e o o

o a
0

0 0

we will find it helpful if A is expressed in a more compact
0

form. Ne may write a condensed version of equation �7! as
-a h

e o o l
A

o a
0

�8!

where 6 and h are clearly defined in equation �7! . Now1 0

that A has been determined, the expressions for the liquid0

potentials above and below the source immediately follow:
2sinh[a  z+h ! ]

x
0 a

0

k a sinh[a  h -h ! ]+a [ �< -k ! -4a a q ]cosh{ a  h -h ! !l 2 2 2 2
T L 0 0 s op T L T 0 0 s

0

4 Pl
k aLsinh  a h !+a

o 0 op
0

2sinh a h !

<o a
0

Pl-k aLsinh  a z! +a [
0 op

0

�C -kT! -4aLa c ]cosh a h !2 2 2 2

0 0 49!

�< -kT! -4aLaT4 ]cosh a z!2 2 2 2

0

�O!

k a sinh a h !+a [�g -k ! -4a a g ]cosh a h !4 1 2 2 2 2
0 0 op T LT oo

0

These results agree with those predicted by Ewing, Jardetsky,
and Press [2!, and Officer [3,5].

The potentials in the liquid layer haviii~ been deter-

mined, we are primarily interested in the pressure recorded

�7!
In the discussion of the multilayer problem that lies ahead



by the receiv '.!-. in the liquid. The state of stress described

by equat.ions �3! is clearly hydrostatic, and the pressure is

taken as the negative of the stress. Making use of identities

from equation  I! and �!,

V <f! =-k
2 2

0 0 0

k =p2= 2
0 0 0

the pres'ure in the liquid in terms of potential is just

P  g,z,o!!=p �l!

P  r,z,v! =p v f g  <,z,v! J  gr! edg �2!

CO 00

P  r z t! �. p f dree M f g  q,z u!! J  qr! gd<o ' ' 2z oe p 0 0 �3!

Evaluation of the double integral in equation �3! may be

performed numerically, or the integration can be done in the

complex plane using Cauchy's theorem.

In the experimental program it seems logical that the receiver

will be suspended above the source for optimum reception, so

equation �0! combined with equation �l! is the formal solu-

tion to the problem. To obtain the expression for the output

pressure as P  r,z,t!, where the r and t dependence has been
0

recovered, we must perform the inverse Hankel transform in

space and the inverse Fourier transform in time.



7. General Solution of the Multilayer Problem

The present problem is a generalization of. the problem

treated in the previouS section. The viscoclastic subboL-Lorn

is assumed to consist of n parallel layers as shown in figure

2. If we attempt to solve the n-layer problem by continuing

along the lines of section six,for eacn additional layer we

consider, the dispersion matrix of equation �1! will increase

dimensionally from a 3x3 matrix to a L3+ n-1! 4]xI 3+ n-1! 4]

matrix. For example, the two viscoelastic layer case would

result in a 7x7 dispersion matrix, etc. It becomes apparent

that for multilayer problems the complexity of the calculations

involved increases dramatically. In fact it vill be helpful to

employ computer techniques for these problems, however, when the

matrices involved become very large, computer time increases

and rnernory space becomes exhausted. Therefore, the primary

purpose of this section will be to obtain a formal solution of

the multilayer problem, through the development of recursion

relations between adjacent layers, whereby matrix size does not

increase beyond 4x4.

Similar to the discussion in the previous section, we

write the liquid and viscoelastic layer potentials as follows:

0 th Layer {liquid layer!

-a I z+ h h I-a z a ze o 0 8
=A e o+Beo+�

0 0 o a
0
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1 st Layer

Ll ALle Ll +BLle Ll

Tl Tl Tl +B e Tl

n th Layer

$L =AL e Ln +BL e LnLn Ln Ln

-a z a zeT =AT e Tn +BT e TnTn Tn Tn

 n+1! th Layer

-a z
~L   +1! =AL   +1! e L  n+l!

-a z
 +1!=AT n+ 1 !eT n+1!

The  n+l! th 'ayer is a halfspace, so no BL and B terms exist

due to the convergence requirement mentioned previously.

For each interface the boundary conditions discussed

in section three are applied. The boundary conditions are

that the radial u and vertical u components of the displace-
r z

ment and the normal a and shear a stresses are continuous
zz rz

at the interface separating two different media. If the most

general case is taken, say for the  i+1! th interface  see

figure 3!, then the boundary conditions can be written from

equations �6! and �7!:

i! u continuous at z=h,:'
r i

4 ,+a O,.=y +a
Li z Ti L  i+1! z T  i+l!
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 i+1! ' L i+1! ' T i+j.}

INTERFACE BETWEEN THE i th AND  i+1! th lAYHRS



23

for compactness, where  i+l!=i':

-a ,h. a .h. -a .h. a ,h.AL e L +BL e Li 1 aT AT'e Tl 1 aT 8 .< TlLl Ll Tl Tl Tl Tl

-a .,h. a .,h. -a .,h. a .,h.AL 'e Li' 1+BL 'e Ll' 1-aT 'AT.,e Tl' 1+ 'BT ,e Ti' i �4!Ll' Ll' Tl Tl Ti ' Tl '

ii! u continuous at z=h.:
z i

z Li z Ti Ti Ti z Li' z Ti' Ti' Ti'

note that

or

-a .h. a .h. 2 a .h. a .h.-aL.A .e Li i+aL,BL.e Li i+/  AT.e Ti i+BT.e Ti i!=Ll Ll. Li Ll Ti Tl

-aL.,AL.,e Li' i+aL.,BL.,e Li' i+   AT.,e Ti' i+BT.,e Ti' i!-a ,h a h + 2 -a h a .,h.
Li' Ll' Ll' Ll' Tl Tl

�5!
iii! g continuous at z=h.:

zz i

-A.k .y .+2p,[8 g .+8  8 y .+k,y .! 7=i Li Li i z Li z z Ti Ti Ti

~"

f' 2 2 -a,,h, a .,h.l~., q �g -kT,,!  AL.,e Li' i+BL.,e Li' i!+i Tj' L1' Ll'

2C aT., -A .,e Ti' i+BT.,e Ti' i�2 -a .,h. a ,,h,
Tl Tl Tl �6!

2 2 -a .h. a .h,p.[�v -k ,! A ,e Li i+B .e Li i!+2a .q  -A ,e Ti i+8 .e Ti i�=-2 -a ,h. a ,h.
i ' Ti Li Li Tl 1 Tl
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iv! 0' continuous at z=h.:
rz

PiI.23 $ .+�q -k i! $ . ]=P,,I 23 $,,+�v -kT,,! QTi, j

or

-a .,h. a .,h.p.,[2a ., -AL.,e Li' i+B ,,e Li' i!+
Li'

q -k ., A i,e Ti' ' T,,e Ti' ~! j �7!2 2 -a .,h. a .,h,

The four equations �4-57! in the eight unknowns AL., 8

Ti' Ti' L  i+1! ' L  i+1! ' T  i+1! T  i+1!
written in matrix form as follows

 i+1! i  i+1!  i+1! �8!

where a , >, and B,. 1, are 4x4 matrices and A. is a column�+1! �.+1 j 1

vector for the coefficients of the potentials for the i th

layer,

A

B

AT'
B

A.=
3. �9!

and similarly, for A,.
 i+1

2 � -a .h. a .h. 2 2 -a .h. a .h.p, I 2a .  -A .e Li i+B,e Li i!+�|. -k,!  A .e Ti i+8 .e Ti i!]=L~ Lx Li Ti T1 T3.
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 i+1! �0!

The matrix a . 1! is constructed from the coefficients from
 a+l!

equations �4-57! of the terms associated with the elements

of the A. vector.
1

The exponential functions may be factored

out of the a . 1! matrix, resulting in the following expression

 i+1!  i+1!  i+1! �l!

where

aT ~
2

Li

 i+1!

and
�2!

-a ,h.
e Li i 0

a .h.
eLii

�3! i+1!
-a, h.

e T3 3.

a .h.
eTii

An expression for the B . 1! matrix may be written similar to
 i+1!

equation �1!

 i+1!  i+1!  i+1! �4!

where

',-1!  i+2! �5!

and

u.�g � k .!

-2p, a
i Lj.

L  i+1!

L  i+1!

T  i+1!

T  i+1!

�< -kT !

2p. a
Li

2
2p ~ a .7,

1. TJ

g. �g -k .!
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e L  i+1! i,

e L i+1! i
a . h,

�6!-a . h.
e T  i+1! i

e T  i+l! i
a . h.

From equation �5!, it is seen that the B . 1! matrix is
 i+1!

formed by replacing the subscripts  i! in equation �2! with

 i+1}. Using equations �1! and �4! in equation �8! gives

[a . e, JA. =[B
 .i+1! i  i+l!  i+ l !  i+1! �7}

a A=8 A
 n+1! n  n+1!  n+1! �S!

where

L  n+1!
0

T  n+1!
0

A B
A 8

 n+1! A
n

ii! for the n th interface

a A =B
n  n 1! n n �9!

Equation �8! or �7! is a recurrence relation relating the

coefficients of the i th layer's potentials to the {i+1! th

layer's potentials. This recurrence relation can be succes-

sively applied for the n-3,ayer case, i. e., referring to

figure 2:

i! for the  n+1} th interface
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iii! for the  n-1! th interface

a A =B
 n-1!  n-2!  n-1!  n-1! �0!

iv! for the third interface

a 3A2=B 3A 3 �1!

v! for the second interface

a2Al=B2A2 �2!

vi! the first interface is a special case, since

ALo
BL

A
0

and p =0. In addition, a source term must be included in the
0

equations for the boundary conditions of the first interface.

Now solving for Al in equation �2!,
-1

Al=a2 B2A2 �3!

A-a BA �4!

substituting equation �4! into equation �3! gives:

ta2' B2jI a3 B ]A �5!

-1

where a2 is the inverse of the a2 matrix. Form equation �1!



This proc< ss can be repeated for all layers, resulting in

=[a B j[a3 B ][a�B ]....[a B j[a  1!B ]A �6!4 4 ' ' n n .  n+1!  n+ 1!  n+ l!

1  n+1!
�7!

where

-1 � 1M= a2 B2][ 3 B3]....[a  +l!B  +1! ]

is a 4x4 matrix. Denoting the element of N in the i th row

and j th column by m , we have
lj

ll 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

�8!

From equation �8!, we see that it is possible to write the
elements of A in equation �7! as

1

Ll ll L n+1! "13 T n+1!

Ll 21 L n+1! 23 T n+1!

Tl"31 L n+1! 33 T n+1!

Tl"41 L, n+1! "43 T  n+1!

�9!

This result implies that the potential coefficients of the
first solid layer are related to the potential coefficients
of the last,  n+1! th, layer by a matrix expression of the

form
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where 8   ! � 8   !-Q.

At this time we will consider the first interface and

introduce the source term into the equation- for the boundary

conditions. Recall that the potentials for the liquid layer

are

-I a h
=-2A e o osinh[a  z+h !]

0 o 0 0
�9!

for z<- h -h !, i. e., above the source, and
0 8

-II a h 2
=-2A e o osinhI'a  z+h ! ] sinh[a  z+h -h ! ] �0!

0 0 o o a 0 o s
o

for z>- h -h !, i. e., below the source. In both equations
0 s

�9! and �0!, the boundary condition at the 0 th interface

 the water surface! has been used to eliminate B in equation
0

�0!. The applicable boundary condition on the water surface

is that o is zero, or equivalently, that g =0. >Je may write
zz 0

the expressions for the potentials in the first solid layer as:

Ll ALle Ll +~Lie Ll �3!

Tl ATle Tl �Tle Tl �4!

are at z=0:

  rz 0-  rz! l

�S!

�e!

�7!

The three boundary conditions that apply to the first. interface
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Applying equations �3!, �4! and �0! to the boundary con-

dition.. r<.suits in three equations i» the fiv<. unk»ow»s A
o

A , D a»d 8 , so the system of three equations is
L

indeterminate. The equations for the boundary conditions at

z=0 can be arranged in matrix form as follows  See Appendix

-2a e o ocosh a h !
a h

0 0 0 Ll Ll

-2p <J e o osinh a h !
2 a h

O 0 0 I 1 �~ kT1!
2 2 ul �q -k 1! 2

-2p laTl~

�r, -k l!-2aL1 2aL

A
0 2coshLa  h -h ! ]

0 0 s

2p
2

sinh[a  h -h ! j
a 0 0 s

0

2
Ll

 80!
Ll�r -kT1!

The indeterminacy in equation  80! can be eliminated by apply-

ing equations �9!. Equation �9! and  80!, when combined,

yield a determinate system of seven independent equations in

seven unknowns. We eliminate the variables ALl +L] ATl and

B 1 in equation  80!, u ing equations �9!, giving the follow-

ing matrix expression.
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2
aL! ] 1 2! ' N31+ 4]

a h
� 2a e o ooosh a h !

0 0 0

2 a h
� 2p w 'e o osinh a h !

0 0 0 1ll t "! 1+m~1! �r. -kTl!  m ] m41! 2a J r,']TJ. '

2
-2aL1  mll"21!+ �g -kTl 31+ 41

L  n+1,!

T  n+1!

 81a!

Equation  8 la! may

a h
-2a e 0 ocosh a h !

0 0 0

be rewritten as

2cosh[a  h -h !]
0 0 S,

2p w
2

sinh [a  h -h ! ]
a 0 0 S

0

A
0

-2p w e o osinh a h !
2 a h

0 0 0 L  n+1!

T  n+1!

 81b!

where

[  + !  C -k !   - ! t ]2
Tl

b23=gl [   13+ 23! �q -kT1! �   33"43! 2 1< ]33 43 ' Tl

2 2b =-2a.  m -m !+ �c -k !  m +m !

2 2
b33=-2aLl 13 m23 +�  kT1 m33"43

2

Ll 13 23 33 43

~l [ 13"23! �< -kT1! �  m33 43 2aTlg ]+ 2 2 2

2 2
-2aLl 13 m23 + �q -kTl 33 43

12 13

'22 '23

'32 '33

2

12 Ll ll 21 31 41

2 +
13 Ll 13 23 ~ 33 43

2cosh[a  h -h !]
0 0 S

2p
sinh[a  h -h !]

a 0 0 S
0
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-a h A.
e o o 1A =-.

o a
0 0

�8!

a cosh[a  h -h !] bl2
0 0 0 s

p v sinh[a  h -h ! ] b22 b232

0 0 0 S
 82a!

'32 '33

and

a cosh  a h ! bl2 bl30 0 0

p ~ sinh{a h ! b22 b232

0 0 0o  83a!

'32 33

Expanding equations  82a! and  83a! gives

1 Ll Tl

+4lila 14 �|; -k l! C4]-p ~ sinh [a  h -h ! ]  -a k C ]2 2 2 2 2
l Tl Tl 4 o o o s Ll Tl 5  82b!

3

+4plaTlr �~, -k l!C4]-p ~ sinh a h ! [-a k C ]2 2 2 2 2

4 o o o Ll Tl 5
 83b!

t".'e are interested in the solution for the acoustic f ield in

th  1 iquid, so we solve for A in equation  811 ! using
0

Cx «incr s l. Ule
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where

l ll 23 13 21

2 ll 21 33 43 31"41 13 23

 84a-e!3= 13- 23! "31- 41 - 11"21 33- 43

4 41 33 31 43

5 ll 21 33 43 31 41 13 23

Xt should be noted that equation �8! reduces to the result

for the n=0 case  one viscoelastic layer! devel. oped in the

previous section. For n=O, equation �9! reduces to a

trivial identity,

Ll Ll

Tl Tl

or ml =1 and m3 =1, and m..=O for ipj. Setting m 1=1, m =1
ij

and m..=0 for igj in equations  84! gives the values of Cl
1j

C =0
1

C =1
2

c =-1
3

C =0
4

C =1
5

in equations  82b! and  83b! which result in the expression

for A. for one viscoelastic layer. Of course, s.':~ce this new
0

method yields an expression for h. for the one-laver ca e
0

equivalent to equation �7!, the subsequen' double integral
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-a h h
A e 0 0 1

o a A
0 0

�8!

The expansions for 61 and h involve the terms Cl >, which in
0

turn involve m.. factors.
ij

The m.. factors mus
j. 3

by equations �7-79!

t be calculated

for n=l, with m., defined

equations become

F' or n=l, these

Al=NA2  85!

where

=[ 2 2]  86!

Ll ll L2 13 T2

Ll"21 L2 23 T2

 87!

Tl 31 12 33 T2

Tl 41 L2 "43 'T2

for P wi 1 l bo i8enti ca 1 to equation �3! . Thus, we have
0

dc veloped a. scheme whereby, det crjlining the components of

the N matrix of. equation �8! and using equation  8la!, A
0

can be found. Let's look at a multilayer problem using this

scheme.

We vill consider two viscoelastic layers to illustrate

the use of the more general method described in this section.

The geometry of the problem is shown in figure 4, which is a

special case of the n-layer problem, figure 2, with n=l. The

expression for the coefficient of. the acoustic potential, A
0

is taken from equation �8!.
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LIQUID LAYER OVERLYING TWO VISCOELASTIC LAYERS
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To Kind A for the two-layer case only thc m.. coefficient.,
0 ij

appearing in equation  87! need to be calculated. The D

term in equation  86! can be written from equations �4! and

�5! as

 88!

where

H =a  89!

From equation �2!

'.T2 'T2

L2 L2

 90!
2 2 2 2 2 -2 2 � 22   4 � T2} � l 2aT2  2j2aT2

�g -k 2 2�Z -k 2l"2 L2 2l 2aL2
and from equation �6!

eL210 0 0

0 0

e T21 0

e L2 1

2
 91!

0eT21

�1!, �2! and �3!

r
a2=a2e2  92!

where

Ll

a
2 2 2 2-2l'laT2 2

V,�~ kT,!  93!2
2li! a

  >r l- }Pl�;, -kT>!.2 .2-2/la 2l laLl

-1
The term a in equation  86! must be computed. T'rom equation.
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and

a h
j l l 0

0 erl 1 0 0

e Tl l 0
 94!

e Tl l

-l
To obtain a, from equation  92!, we make use of the matrix

relation for the inverse of the product of two matrices.

 e !  a !  95!

From equations  85!,  88! and  9 5!

M=[ e2 a2 +2 2  96!

After considerable algebra the m,. coefficients of equation

 87! and, finally, Cl 5 from equations  84! can be calculated

 See Appendix E!. Again our scheme has given us an expression

for A and subsequently for the double integral P . The re-
0 0

suits agree with those obtained by expanding the 7x7 dispersion

matrix as prescribed by the earlier method used.



CHAPTER III

RESULTS AND DISCUSSION
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XII. RESULTS AND DISCUSSION

1 . S url&l~ar

The expression for the acoustic response due to a point

source excitation in a liquid layer overlying a multilayer vis-

coelastic subbottom has been determined. The expression impli-

citly includes the contribution of the viscoelastic subbottom

lying below the liquid, a result of coupling phenomenon between

adjacent layers. The input-output pressure relationship appears

in general integral equation form, a double integral in fact,

due to F'ourier and Hankel transformations, in the temporal and

spatial domains respectively. The stress and displacement fields

in both the liquid and viscoelastic media were determined as a

necessity of applying the boundary conditions at existing. in-

terfaces.

The primary innovations in the multilayer techniques

used include the development of recursion relations between

adjacent layers to find the liquid layer potential more easily

and the introduction of complex wave numbers to describe the

damping of the viscoelastic medium. The problem of expressing

the liquid. layer potential for multilayer problems has been

reduced to determining eight components of a 4x4 matrix and

u ing these in a simple matrix equation. A convenience of the

method developed is that no matrix used exceeds 4x4 dimensions,

allowing the employment of a computer to aid, in the calculation

of potentials with a mi: ium of time and cost. 9'ie existence

of complex wave numbers the expression for the liquid layer



potential indicates that evaluation of the <loublc integral can

be done performing an integration in the complex plane using

Cauchy's theorem. Complex variable techniques includ» the

algebraic search for roots and branch cuts. The integration

will yield a functional relationship between the unknown Lame

constants and the density of the viscoelastic subbottom.
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2. I<ccommendation-

The scope of the present invcsf igation i., limitc d duv.

to the simplifications in the model used in this treat..ment, the

assumption of plane boundaries, etc. The model could be made

more realistic by including the effects of medium inhomogeneities

and bottom roughness. Medium inhomogeneities can be incorporated

into the model by introducing perturbation techniques. In this

ca e it seems likely that perturbation would be performed about

the density parameters. Bottom roughness can be accounted for

in a more sophisticated model by employing statistical methods.

The advances in multilayer analysis, introduced by this

thesis, suggest. the use of computer studies for the solution of

n-layer problems. The computer may also play an important role

evaluating the double integral, obtained in the formal solution,

either by numerical methods or complex integration. An invest-

igation of the limiting case, where the depth of water covering

the viscoelastic layers becomes infinite, would he helpful for

modeling tests where a single short pulse is reflected off the

subbottom and the first bottom return is analyzed. This type

of test is the most frequently performed and simplest to analyze.
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Derivation of the IIiidrodvnamic,~nd the Viscoela.:tic T'i.eld

Equations

Thc equation of motion  balance of the rate of change

of j inear momentum! describinq a fluid, known as the Navier-

Stoke" equation reads

where F is the body force resulting from an external field,
k

we are considering a hydrodynamic field, which cannot sustain

shear forces, the stress tensor does not contair a deviatoric

pa rt 'thus

kl
kl P

and the Ilavier-stokes equation becomes

P � v +v Blv !+Pd =PFk 1 k kl k
 A-lb!

Two other relationships that prove to he helpful in describing

the hydrodynamic field are the continuity equation  conserva-

tion of mass density!,

' ~

and tho equation of state  constitutive ref ation!,

Qk] is the stress tensor, and v ' is the ve 1 ocity vector . Since



 Z -3a!

or

k 2 k
p=c d p

0
 A-3b!

Now, we linearize equations  A-l!,  A-2! and  A-3! by defining

a set of perturbation parameters,

v  r,t!=0+v  r,t!  A-4a!

p r,t!=p +p r,t!  A-4b!

 A-4c!

where for the no-flow regime, v =0 and the superscripts ~
k

refer to the fluctuating part of the variable functions. Ne

obtain

~k k~-
p 3 v +3 p=G

o t
 A-5a!

~k�
3 p+p 3 v =S2

t o k
 A-5b!

k~ 2 k~
p-c 3 p=0

0
 A-5c!

where S and S are force terms or equivalent source terms

composed of higher order non-linear terms responsible for tur-

bulen.ce.

By omitting these higher order terms and returning

from tensor notation to vector notation we have the following



homogeneous equations:

p 3 v-I-Vp'=0
o t

 A-6 a!

p V.v+3 p=0
o t

 A-6b!

Vp-c Vp=Q
2

0
 A-6c!

Subtracting equation  A � 6c! from equation  A-6a! and taking

the time derivative we obtain

2- 2
p 3 v+c V3 p=Q

o t o t
 A-7a!

Substituting for 3 p from equation  A-6b! we obtain

2- 2
p 3 v+c V  -p V.v!=0

o t o o
 A-7b!

or

l 2�
V  V.v! - � 3 v=0

2 t
c

0

 A-7c!

Thus far we have developed the hydrodynamic field

from the fluid dynamics point of view. Due to forthcoming

boundary condition considerations, however, it is conven-

in order to establish a ba.sis of comparison between the

viscoelastic and fluid media. We accomplish this simply by

describing the fluid in terms of displacement. Since v=3 u,
t

equation  A-7c! may be written as

V V. � u !!-. 3 � u !=P
c

0

ient to describe the fluid from the elasticity point of view



X e! = J' X t! e dt

X t!- f X z! e d g
2lT

we obtain from equation  A-7d! the following vector equation:

V  V. U !+k L1 =0
0 0 0

 A-7e!

Zf we define the displacement potential for the fluid as

it follows that

V  V $ !+k Vg =0  A-loa!

or

V[ V +k !$ ]=0  A-10b!

Without loss of generality, we may write the scalar wave

equation for the fluid as

 V +k !~ =0

where the integration constant arbitrarily has been set

equal to zero.

At this time if we define the courier tran" form pair, linking

the time and frequency domains, as





become time dept ndent operators

A=A +A
t

 A-16!

v=v +u
t

2- 2 =q3 u-  A+p! P  V.u! -pV u=0
t  A-17}

Taking the Fourier transform in time, according to the trans-

from pair defined b~i eouations  A-8!, we obtain

k

 V +k ! u- � ! V  V.u! =0
k

 a-18!

where

k =~/c k =z/c

A=X +i~A. +iMP  A-19!

2=-
c =p/pcL=  A+2p! /p

'Separating u into longitudinal and transverse parts,

Q=u +u  A-20!

and performing vector manipulations on equation  A-18!, we

obtain two vector Hclmholtz equations as follows:

Sub:ti tuti.ng equation"  A-3.3!,  A-l4! and  A-3.5! into equation

 A-12b! and noting that. the metric gj in Ruche.idean space is
no'thing but Kronecker delta, 8kl we obtain



2 2-=
 V +k !u =0  A-2l a!

 V +k,,! u,=0
2 2-=

T
 A-2lb!

u =-VP  A-22a!

-VS
u =VxVxe

z T
 A � 22b!

where e is the unit vector in the z-direction for cylindrical
z

coordinates, and $ and P are known to satisfy the following

relations

�+k !< =0
2 2

 A-23a!

 V +k !P =0
2 2

 A-23b!

which will be used in our calculations. In general there are

two types of transverse shear waves, the horizontal shear and

the vertical shear, but, due to the type of excitation intro-

duced in the problem at hand, a dilitational point source, the

theory of elasticity predicts that we should consider only the

vertical shear components

It is preferable to solve these vector wave ecruai ions by using

scalar potentials. The longitudinal and the  vertical shear!

transverse parts can be represented by the following expres ions
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h =1
3

h
2

h =1
1

 B-3!

2. 0 "3u =r
1

-VS � 2 � 1 2 � 2 ~1 �, 2u =VxVxe ! =3 p e + � 3 ! e � � g +"-3 < -I- . 3 !�,! e  H-4a!
zTrzTrr6zTOrTrrT2GT'z

r

or by substituting an identity from the scalar Hefmholtz

equation

-VS 2 � 1 2 � ,2 2
u =3 f e+ 3 g e+� f+k $,!e

T rz T r r 8z T 6 z T T T z

Thus, the total displacement described by equation  A-20!

becomes equation �6} of the text.

By letting A=e 4, we can easily ohtain the commoner ts of the'z T

transverse vertical shear,



APP].NDTX C

Apnli rat irn of t hr. boundary Conditions for the On< -lavr r T'i-nblcm

2 a h
2p M

2

{2p <u e o osinh a h !!A + sinh[a  h -h !]=0

0 o o o a 0 0 s
0

{ 2l laL'- lkL!AL { 2l laT  kT'+aT! !AT  C-1!

-{a jAL+{k, +a !A =-{2a e o ocosh  a h ! !A -2cosh [a  h -h ! ]  C-2!2 2 a h

0 0 0 0 0 0 s

{2,LjAL,{ T 2.T!AT=02 2
 C-3!

Dimplifying with the aid of the following identities,

2p a -X k =p �g -k !  C-4a!

k +a
2 2= 2

 C-4b!

k +Pa =�r, -k !
2 2 2 2

 C-4c!

and arran<ging our equations in a fashion such that only sourcQ

Ne obtain the 3x3 dispersion matrix in the text hv

applying three houndarv conditions, equations �5!, �6! and

�7!, at "=0, and using the expressions that describe the stress

and displacement fields in terms of potential, given hy equa-

tion.. �3!, �4! and �7!. Of course, we will use the expression

for the liquid potential below the source, while applying these

boundary conditions at the liquid-solid interface. Applying

equations �5!, �6! and �7!, respectively, we obtain:



terms a@Dear on the right. hand ."iree of the equation, ~we obtain

matrix equation �l! in the text.



APPENDIX D

Application of the'. Boundarv C<>n~~ition, for the»I'multi lave r T'roblern

In order to obtain mat six equation  80! of the text wc

need only refer to Appendix C and recognize that the solution

of the more general multilayer problem requires that we retain

the B l and B l terms which disappeared in the one-layer prob-

lem due to convergence requirements. For this reason we have

a 3x5 medium characteristic matrix for the multilaver problem

as opposed to the 3x3 matrix for the one-layer problem.



APPZNnZX r.

.">olution For the Acoustic T'ot ~ nt ial. for the 'Two-lav  r Probl   m

Jiecall that in Section 7 of. the text wv. d ve loped a

scheme ivhcreby, determining the components of the first a»d

~=t  2!  E-1!

the text we found each of the matrices e2 pe'2 pa2 BnR D'2 so

we need only perform the matrix inversion process on e and

a' and multiply properly to obtain

e Ll 1

e Ll 1 0

 e2!  E-2!
OeT11

0 0 e Tl 1

third columns of the Fl matrix of equation �8! and using

equation  81a!, thc acoustic potential can be found for any

number of layers. Note that the text ended after formulating

tho solution for the I'I matrix in the two-layer problem under

consideration.. At this point considerable algebra is required

to obtain the components of the N matrix, and finally Cl

From equation  96! of the text, the expression for Ivt

for the two-layer problem is
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